Agricultura de conservación en lomos permanentes bajo riego y compactaciónefectos en el ambiente edáfico y el desarrollo del cultivo

  1. Cid, Patricio
Dirigida por:
  1. Helena Gómez Macpherson Director/a

Universidad de defensa: Universidad de Córdoba (ESP)

Fecha de defensa: 15 de noviembre de 2013

Tribunal:
  1. Carlos Cantero Martínez Presidente
  2. Encarnación Taguas Ruiz Secretario/a
  3. Jorge Álvaro Fuentes Vocal

Tipo: Tesis

Resumen

RESUMEN DE LA TESIS DOCTORAL DE D./Dª Patricio Cid El resumen de la tesis para la base de datos Teseo debe ser una presentación de la tesis y tener la extensión suficiente para que quede explicado el argumento de la tesis doctoral. El formato debe facilitar la lectura y comprensión del texto a los usuarios que accedan a Teseo, debiendo diferenciarse las siguientes partes de la tesis: El resumen se presenta en idioma español e inglés. 1. introducción o motivación de la tesis La agricultura es un caso de interacción entre suelo- biología-atmósfera de la que el medio ambiente puede ser afectado positiva o negativa dependiendo del modo en que se utilizan los factores que intervienen en los procesos. Por desgracia las prácticas agrícolas llevan a consecuencias no deseadas en algunos casos: las tierras de cultivo manejadas de forma tradicional (mediante quema de rastrojos, uso de arado de reja y vertedera además de labranzas secundarias) están expuestas a los efectos de la lluvia y de la escorrentía que aquella puede generar, y, en definitiva, a la erosión del suelo. Dado que la agricultura de conservación (AC) implica labranza reducida o su ausencia además del mantenimiento de rastrojos para cubrir el suelo y la rotación de cultivos, es vista comúnmente como una forma de producir alimentos y fibras u otros productos de la agricultura y reducir al mínimo los riesgos ambientales. Los sistemas agrícolas basados ¿¿en camas permanentes combinadas con riego y tráfico controlado de maquinaria agrícola (CP) demostraron ya la capacidad de mejorar la calidad del suelo en términos de contenido materia orgánica (MOS) y de reducción de la erosión del suelo en comparación con sistemas de camas de labranza convencional también combinados con tráfico controlado (CC) durante una período inicial de estudio, mientras que la producción de bienes y sin limitaciones aparentes. Sin embargo, los sistemas agrícolas tienen que ser productivos y eficientes más allá del corto plazo, por lo que el mencionado sistema CP fue probado en el mediano plazo desde su adopción, tanto en parcelas experimentales como en parcelas comerciales en la provincia de Córdoba, España, en términos de la calidad del suelo, uso de agua por cultivo, crecimiento y rendimiento del cultivo, el comportamiento hidrológico a escala de cuenca y el riesgo de erosión. El objetivo de este Tesis es una evaluación a largo plazo de este sistema en términos de conservación de suelo y agua, así como el crecimiento del cultivo y la producción , teniendo en cuenta las variaciones espaciales (posiciones de camas y surcos con y sin tráfico de rueda de maquinaria) y la escala, prestando atención a la evolución de las posibles limitaciones (compactación de suelo principalmente). Los objetivos específicos de la tesis son: (a) evaluar los efectos a largo plazo de CP y el tráfico controlado de maquinaria en el crecimiento de los cultivos, el rendimiento y la eficiencia del uso del agua; (b) evaluar una operación de subsolado de precisión para reducir la compactación del suelo y la mejora de crecimiento del sistema radicular y el rendimiento del cultivo en CP; (c) caracterizar la evolución de los residuos de los cultivos en el suelo, la calidad del suelo, y las emisiones de CO2 de suelo teniendo en cuenta la variación temporal y espacial debido a la labranza y los regímenes de tránsito de rueda de maquinaria agrícola; (d) estimar el potencial de secuestro de carbono de CP en nuestras condiciones locales; (e) evaluar el desempeño de CP en cuanto al control de la erosión a escala de cuenca. Agriculture is a case of soil-biology-atmosphere interaction from which the environment can be positively or negatively affected depending on the use of the factors involved. Unfortunately, in some cases agricultural practices lead to undesirable consequences: cropping lands managed in a traditional way (where crop residues are burned and/or mouldboard plough is used combined with secondary tillage) are exposed to the effect of rain and runoff that may imply, ultimately, soil erosion. Since conservation agriculture (CA) implies reduced or zero tillage plus maintenance of plant residues for soil covering and crops rotation, is commonly seen as a way of producing food and fibre while minimizing environmental risks. Farming systems based on irrigated permanent beds combined with controlled traffic (PB) demonstrated capability to improve soil quality in terms of organic matter (SOM) content and to reduce soil erosion risk relative to conventionally tilled beds also combined with controlled traffic (CB) during an initial period of study while producing goods without apparent limitations. However, agricultural systems have to be productive and efficient beyond the short term, so that the mentioned PB system was tested on the medium term in both experimental plots and commercial plots in the province of Cordoba in terms of soil quality, use of water by crop, crop growth and yield, hydrological behaviour at catchment scale and erosion risk. The aim of this Ph.D. Thesis is a longer term evaluation of this system in terms of soil and water conservation as well as crop growth and production, considering spatial and scale variations and paying attention to the evolution of possible constraints. The particular objectives of the thesis are: (a) to evaluate longer term effects of PB combined with controlled traffic on crop growth, yield and water use efficiency; (b) to evaluate a precision subsoiling operation for reducing soil compaction and improving root growth and yield in PB; (c) to characterize the evolution of crop residues on the ground, soil quality, and soil CO2 effluxes considering temporal and spatial variation due to tillage and traffic regimes; (d) to estimate carbon sequestration potential of PB under our local conditions; (e) to assess PB performance for erosion control at the catchment scale. 2.contenido de la investigación Una operación de labranza vertical localizada fue llevada a cabo en el cuarto año del sistema CP para aliviar la compactación del suelo y mejorar, de ser posible, el crecimiento y rendimiento del cultivo. CC, CP, y CP descompactado en sus surcos con tráfico de rueda (CPD) fueron evaluados en cuanto a las condiciones del suelo y el crecimiento de los cultivos (tanto en sus órganos áereos como subsuperficiales) y el rendimiento a partir de 2010 y hasta 2012, es decir, desde el cuarto hasta el sexto año desde la formación camas en CP. El suelo resultó más compactado en CP que en CC. CP y CPD difirieron entre sí en cuanto a la compactación del suelo en los surcos con tráfico de rueda de maquinaria, que fue menor en CPD debido a la labranza vertical localizada. No se observaron tendencias claras en términos de crecimiento o rendimiento de cultivo a lo largo de los tres años. Sin embargo el desarrollo del sistema radicular difirió entre los sistemas de cultivo y, dentro de ellos, entre los sitios (surcos, camas). Se desarrollaron más raíces en CC en el suelo superficial (0-0,4 m) y en CP en suelo más profundo (0,4-1 m). CPD presentó el suelo con la menor cantidad de raíces. El tráfico afectó el crecimiento de las raíces, que se concentraron en los sitios libres de la influencia de las ruedas del tractor. Los residuos de cultivos, un componente importante de los sistemas de CP y CPD, se acumularon principalmente en surcos de estos sistemas. Además, algunos de los componentes del ciclo del carbono (MOS y su dinámica así como las emisiones de CO2) se evaluaron en los tres sistemas de cultivo. El alomado del suelo promovió emisiones de CO2 de suelo desde las camas y la labranza vertical localizada aumentó las emisiones en surcos descompactados, lo cual tuvo relación con la humedad y temperatura del suelo, llevando en algunos casos a reducción de MOS. El ciclo del agua y la erosión fueron evaluados en una finca comercial con cultivos anuales regados con técnicas de conservación de suelo, tales como alomado semipermanente, rotaciones de cultivos y labranzas verticales localizadas. El estudio contó con información detallada de las prácticas agrícolas junto con los datos recogidos en una estación hidrológica ubicada a la salida de una cuenca de 27 hectáreas dentro de la finca. Las precipitaciones generaron la mayor parte de la escorrentía escorrentía y pérdida de suelo observadas en la cuenca dentro de la finca. A pesar del hecho de que se aplicaron grandes láminas de riego durante el estudio, la escorrentía producida y las pérdidas de suelo causadas por dicho agente fueron insignificantes. La cobertura del suelo por el dosel de los cultivos y por los rastrojos, así como el manejo del suelo en cuanto a las labranzas practicadas, tuvieron una gran influencia en la erosión de la cuenca. Las técnicas de conservación utilizadas en la finca parecen ser útiles en la reducción de la erosión. Algunos productos agroquímicos también salieron de la cuenca con el agua de escorrentía, algo que debe ser evaluado con mayor profundidad. Zone vertical-tillage was practiced in the fourth year of running PB to alleviate soil compaction and to enhance, if possible, crop growth and yield. CB, PB and the decompacted PB (DPB) were evaluated in terms of soil conditions and crop growth (both above as below ground) and yield from 2010 to 2012, i.e., from the fourth to the sixth year since beds formation in PB. Soil resulted more compacted in PB than in CB. PB and DPB differed to each other regarding soil compaction in trafficked furrows, which was lower in DPB due to the zone vertical-tillage performed on it. No clear tendencies were observed in terms of crop above ground biomass production throughout the three years. Nevertheless, root system development did differ among planting systems and, within them, among sites (furrows, ridges). More roots were developed in CB in shallow soil (0-0.4 m) and in PB in deeper soil (0.4-1 m). DPB had the soil with the lowest amount of roots. Traffic influenced root growth, which concentrated in sites free of tractor-wheel influence. Crop residues, an important component of the PB and DPB systems, accumulated mainly in furrows of these systems compared with beds. Additionally, some components of the carbon cycle (SOM dynamic and CO2 emissions) were tested in the three planting systems. Soil ridging promoted CO2 emissions from beds and vertical-zone tillage increased emissions in furrows, in relation with soil moisture and temperature in some cases, reducing organic matter contents. Water cycle and erosion were assessed in an irrigated annual crops based-commercial farm where soil conservation techniques such as semipermanent ridges, zone vertical-tillage and crop rotations are used. Farming practices together with data collected in a hydrological station located at the outlet of a catchment of 27 ha within the farm made the study possible. Rainfall generated most part of runoff runoff and soil losses from the catchment. In spite of the fact that large irrigation depths were applied during the study, the produced runoff and the soil losses were negligible. Soil coverage by crop and residues, as well as soil management in terms of tillage, had a major influence on erosion in the catchment. The conservation techniques used in the farm seem to be useful in reducing erosion. Some agrochemicals were also exported with runoff water, something that must be evaluated in more depth. 3.conclusión Las camas permanentes re regadío y tráfico controlado, como una variante de los sistemas de agricultura de conservación, está demostrando continuamente, tanto a escala experimental como comercial, ser una importante para la producción de bienes en el entorno mediterráneo, mientras que ofrece determinadas externalidades como la mejora en la calidad del suelo y la reducción de riesgo de erosión. Permanent beds, as a variant form of conservation agriculture systems, is continuously demonstrating, both at experimental and commercial scale, to be an important tool to produce goods in the Mediterranean environment while offering some externalities such as improvement in soil quality and reducing erosion risk. 4. bibliografía Aguilar M, Borjas F, Espinosa M (2007). Agronomic response of maize to limited levels of water under furrow irrigation in southern Spain. Spanish J. Agric. Res. 5: 587¿592. Allen RG, Pereira LS, Raes D, Smith M (1998). FAO Irrigation and Drainage paper No. 56 - Crop evapotranspiration (guidelines for computing crop water requeriments) (FAO, Ed.). Rome. Alletto L, Coquet Y, Justes E (2011). Effects of tillage and fallow period management on soil physical behaviour and maize development. Agric. Water Manag. 102: 74¿85. Alvarez R, Alvarez CR, Lorenzo G (2001). Carbon dioxide fluxes following tillage from a mollisol in the Argentine Rolling Pampa. Eur. J. Soil Biol. 37: 161¿166. Alvarez R, Steinbach HS (2009). A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 104: 1¿15. Álvaro-Fuentes J, Cantero-Martínez C (2010). Short communication. Potential to mitigate anthropogenic CO2 emissions by tillage reduction in dryland soils of Spain. Spanish J. Agric. Res. 8: 1271¿1276. Álvaro-Fuentes J, Cantero-Martínez C, López MV, Arrúe JL (2007). Soil carbon dioxide fluxes following tillage in semiarid mediterranean agroecosystems. Soil Tillage Res. 96: 331¿341. Álvaro-Fuentes J, Easter M, Paustian K (2012). Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155: 87¿94. Andow DA (1991). Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36: 561¿586. Andrade FH, Cirilo AG, Uhart S, Otegui M (1996). Ecofisiología del cultivo de maíz (EEA-Balcarce, CERBAS, INTA-FCA, UNMP, and La-Barrosa, Eds.). Dekalb Press: Buenos Aires. Angers DA, Eriksen-Hamel NS (2008). Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci. Soc. Am. J. 72: 1370¿1374. ASABE (2009a). Soil cone penetrometer. ASABE Stand. ASABE (2009b). Procedures for using and reporting data obtained with the soil cone penetrometer. ASABE Stand. Atwell BJ (1993). Response of roots to mechanical impedance. Environ. Exp. Bot. 33: 27¿40. Azooz RH, Lowery B, Daniel TC, Arshad MA (1997). Impact of tillage and residue management on soil heat flux. Agric. For. Meteorol. 84: 207¿222. Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007). Tillage and soil carbon sequestration - What do we really know? Agric. Ecosyst. Environ. 118: 1¿5. Baker CJ, Saxton KE (2007). No-tillage seeding in conservation agriculture, 2nd edn. (CJ Baker and KE Saxton, Eds.). FAO and CABI: Cambridge, MA, USA. Balesdent J, Chenu C, Balabane M (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 53: 215¿230. Ball BC, Robertson EAG (1994). Effects of uniaxial compaction on aeration and structure of ploughed or direct drilled soils. Soil Tillage Res. 31: 135¿148. Barros R, Isidoro D, Aragüés R (2011). Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance. Agric. Water Manag. 98: 1569¿1576. Bartley R, Roth CH, Ludwig J, Mcjannet D, Liedloff A, Corfield J, et al. (2006). Runoff and erosion from Australia¿s tropical semi-arid rangelands: influence of ground cover for differing space and time scales. Hydrol. Process. 20: 3317¿3333. Bauder JW, Randall GW, Schuler RT (1985). Effects of tillage with controlled wheel traffic on soil properties and root growth of corn. J. Soil Water Conserv. 40: 382¿385. Beecher HG, Dunn BW, Thompson JA, Humphreys E, Mathews SK, Timsina J (2006). Effect of raised beds, irrigation and nitrogen management on growth, water use and yield of rice in south-eastern Australia. Aust. J. Exp. Agric. 46: 1363¿1372. Benjamin JG, Blaylock AD, Brown HJ, Cruse RM (1990). Ridge tillage effects on simulated water and heat transport. Soil Tillage Res. 18: 167¿180. Bessam F, Mrabet R (2003). Long-term changes in soil organic matter under conventional tillage and no-tillage systems in semiarid Morocco. Soil Use Manag. 19: 139¿143. Bingham IJ (2001). Soil-root-canopy interactions. Ann. Appl. Biol. 138: 243¿251. Bingham IJ, Bengough AG, Rees RM (2010). Soil compaction¿N interactions in barley: Root growth and tissue composition. Soil Tillage Res. 106: 241¿246. Blanco-Canqui H, Lal R (2007). Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till. Soil Tillage Res. 95: 240¿254. Blanco-Canqui H, Schlegel AJ, Heer WF (2011). Soil-profile distribution of carbon and associated properties in no-till along a precipitation gradient in the central Great Plains. Agric. Ecosyst. Environ. 144: 107¿116. Blevins RL, Frye WW (1993). Conservation tillage: an ecological approach to soil management. In: Sparks DL (ed) Advances in Agronomy Vol. 51, Academic Press Vol 51, pp 33¿78. Bonaiti G, Borin M (2010). Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields. Agric. Water Manag. 98: 343¿352. Botta GF, Rivero D, Tourn M, Bellora Melcon F, Pozzolo O, Nardon G, et al. (2008). Soil compaction produced by tractor with radial and cross-ply tyres in two tillage regimes. Soil Tillage Res. 101: 44¿51. Boulal H, Gómez-Macpherson H (2010). Dynamics of soil organic carbon in an innovative irrigated permanent bed system on sloping land in southern Spain. Agric. Ecosyst. Environ. 139: 284¿292. Boulal H, Gómez-Macpherson H, Gómez JA, Mateos L (2011). Effect of soil management and traffic on soil erosion in irrigated annual crops. Soil Tillage Res. 115-116: 62¿70. Boulal H, Gómez-Macpherson H, Villalobos FJ (2012). Permanent bed planting in irrigated mediterranean conditions: short-term effects on soil quality, crop yield and water use efficiency. F. Crop. Res. 130: 120¿127. Boulal H, Mateos L, Gómez-Macpherson H (2011). Soil management and traffic effects on infiltration of irrigation water applied using sprinklers. Irrig. Sci. 29: 403¿412. Breland TA, Hansen S (1996). Nitrogen mineralization and microbial biomass as affected by soil compaction. Soil Biol. Biochem. 28: 655¿663. Brévault T, Bikay S, Maldès JM, Naudin K (2007). Impact of a no-till with mulch soil management strategy on soil macrofauna communities in a cotton cropping system. Soil Tillage Res. 97: 140¿149. Bronick CJ, Lal R (2005). Soil structure and management: a review. Geoderma 124: 3¿22. Bullock P, Newman ACD, Thomasson AJ (1985). Porosity aspects of the regeneration of soil structure after compaction. Soil Tillage Res. 5: 325¿341. Burt CM, Clemmens AJ, Strelkoff TS, Solomon KH, Bliesner RD, Hardy LA, et al. (1997). Irrigation performance measures: efficiency and uniformity. J. Irrig. Drain. Eng. 123: 423¿442. Busscher WJ, Bauer PJ (2003). Soil strength, cotton root growth and lint yield in a southeastern USA coastal loamy sand. Soil Tillage Res. 74: 151¿159. Busscher WJ, Bauer PJ, Camp CR, Sojka RE (1997). Correction of cone index for soil water content differences in a coastal plain soil. Soil Tillage Res. 43: 205¿217. Calleja R, Boulal H, Gómez-Macpherson H (2008). An innovative way to handle residues in a no-tillage maize-based system under sprinkler irrigation in southern Spain. Ital. J. Agron. 3: 643¿644. Calonego JC, Rosolem CA (2010). Effects of perennial fodder crops on soil structure in agricultural headlands. Eur. J. Agron. 33: 242¿249. Calviño PA, Sadras VO, Andrade FH (2003). Development, growth and yield of late-sown soybean in the southern Pampas. Eur. J. Agron. 19: 265¿275. Campbell CA (1972). Soil organic carbon, nitrogen and fertility. In: Schnitzer M, Khan SU (eds) Developments in Soil Science, Elsevier, pp 173¿271. Caraveli H (2000). A comparative analysis on intensification and extensification in mediterranean agriculture: dilemmas for LFAs policy. J. Rural Stud. 16: 231¿242. Carbonell-Bojollo RM, González-Sánchez EJ, Veróz-González O, Ordóñez-Fernández R (2011). Soil management systems and short term CO2 emissions in a clayey soil in southern Spain. Sci. Total Environ. 409: 2929¿35. Carroll C, Halpin M, Burger P, Bell K, Sallaway MM, Yule DF (1997). The effect of crop type, crop rotation, and tillage practice on runoff and soil loss on a Vertisol in central Queensland. Aust. J. Soil Res. 35: 925¿940. Carter MR (1988). Temporal variability of soil macroporosity in a fine sandy loam under mouldboard ploughing and direct drilling. Soil Tillage Res. 12: 37¿51. Carter DL (1990). Soil erosion on irrigated lands. Irrig. Agric. Crop. Agron. Monogr. no 30: 1143¿1171. Carter MR (2002). Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agron. J. 94: 38¿47. Carter DL, Berg RD (1991). Crop sequences and conservation tillage to control irrigation furrow erosion and increase farmer income. J. Soil Water Conserv. 46: 139¿142. Casalí J, Gastesi R, Álvarez-Mozos J, De Santisteban LM, Del Valle de Lersundi J, Giménez R, et al. (2008). Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain). Agric. Water Manag. 95: 1111¿1128. Casals P, Lopez-Sangil L, Carrara A, Gimeno C, Nogués S (2011). Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a mediterranean dehesa. Global Biogeochem. Cycles 25. Cerdan O, Govers G, Le Bissonnais Y, Van Oost K, Poesen J, Saby N, et al. (2010). Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology 122: 167¿177. Chamen T, Alakukku L, Pires S, Sommer C, Spoor G, Tijink F, et al. (2003). Prevention strategies for field traffic-induced subsoil compaction: a review. Part 2. Equipment and field practices. Soil Tillage Res. 73: 161¿174. Chamen WCT, Cavalli R (1994). The effect of soil compaction on mole plough draught. Soil Tillage Res. 32: 303¿311. Chamen WCT, Chittey ET, Leede PR, Goss MJ, Howse KR (1990). The effect of tyre/soil contact pressure and zero traffic on soil and crop responses when growing winter wheat. J. Agric. Eng. Res. 47: 1¿21. Chantigny MH, Rochette P, Angers DA (2001). Short-term C and N dynamics in a soil amended with pig slurry and barley straw: a field experiment. Can. J. Soil Sci. 81: 131¿137. Chen G, Weil RR (2011). Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res. 117: 17¿27. Te Chow V, Maidment DR, Mays LW (1988). Applied hydrology. McGraw-Hill International Editions. Clark LJ, Whalley WR, Barraclough PB (2003). How do roots penetrate strong soil? Plant Soil 255: 93¿104. Coelho MB, Mateos L, Villalobos FJ (2000). Influence of a compacted loam subsoil layer on growth and yield of irrigated cotton in Southern Spain. Soil Tillage Res. 57: 129¿142. Connolly RD (1998). Modelling effects of soil structure on the water balance of soil¿crop systems: a review. Soil Tillage Res. 48: 1¿19. Cresswell HP, Kirkegaard JA (1995). Subsoil amelioration by plant-roots. The process and the evidence. Aust. J. Soil Res. 33: 221. Dao TH (1998). Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a paleustoll. Soil Sci. Soc. Am. J. 62: 250¿256. Devkota M, Martius C, Lamers JPA, Sayre KD, Devkota KP, Gupta RK, et al. (2013). Combining permanent beds and residue retention with nitrogen fertilization improves crop yields and water productivity in irrigated arid lands under cotton, wheat and maize. F. Crop. Res. 149: 105¿114. Van Dijk PM, Kwaad FJPM (1996). Runoff generation and soil erosion in small agricultural catchments with loess-derived soils. Hydrol. Process. 10: 1049¿1059. Djigal D, Saj S, Rabary B, Blanchart E, Villenave C (2012). Mulch type affects soil biological functioning and crop yield of conservation agriculture systems in a long-term experiment in Madagascar. Soil Tillage Res. 118: 11¿21. Doran JW (1980). Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 44: 765¿771. Driscoll JA (2013). Water conservation and nutrient, sediment, and herbicide movement in furrow-irrigated tillage systems. Master of Science Thesis. Colorado State University. Durán Zuazo VH, Rodríguez Pleguezuelo CR (2009). Soil-erosion and runoff prevention by plant covers: a review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture, Springer Vol 28, pp 65¿86. Dwyer LM, Ma BL, Stewart DW, Hayhoe HN, Balchin D, Culley JLB, et al. (1996). Root mass distribution under conventional and conservation tillage. Can. J. Soil Sci. 76: 23¿28. Eder A, Strauss P, Krueger T, Quinton JN (2010). Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment, Austria). J. Hydrol. 389: 168¿176. Errouissi F, Ben Moussa-Machraoui S, Ben-Hammouda M, Nouira S (2011). Soil invertebrates in durum wheat (Triticum durum L.) cropping system under Mediterranean semi arid conditions: A comparison between conventional and no-tillage management. Soil Tillage Res. 112: 122¿132. Eugster W, Moffat AM, Ceschia E, Aubinet M, Ammann C, Osborne B, et al. (2010). Management effects on european cropland respiration. Agric. Ecosyst. Environ. 139: 346¿362. FAO (2012). What is Conservation Agriculture?, available at http://www.fao.org/ag/ca/1a.html. FAO (2013a). Conservation Agriculture area in 2008. In aquastat, available at http://www.fao.org/nr/water/aquastat/data. FAO (2013b). Economic, Trades and Markets, available at http://www.fao.org/economic/est/en/#.UioAxdJ7KSp. Fausey NR (1990). Experience with ridge-till on slowly permeable soils in Ohio. Soil Tillage Res. 18: 195¿205. Fernández-Gómez R, Mateos L, Giráldez JV (2004). Furrow irrigation erosion and management. Irrig. Sci. 23: 123¿131. Follett RF, Castellanos JZ, Buenger ED (2005). Carbon dynamics and sequestration in an irrigated Vertisol in Central Mexico. Soil Tillage Res. 83: 148¿158. Francia Martínez JR, Durán Zuazo VH, Martínez Raya A (2006). Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci. Total Environ. 358: 46¿60. Franzluebbers AJ (1999). Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil Ecol. 11: 91¿101. Friedrich T, Derpsch R, Kassam A (2012). Overview of the Global Spread of Conservation Agriculture. In ¿Field Actions Science Reports. Special Issue 6: Reconciling poverty eradication and protection of the environment.¿ FACTS Reports: 0¿7. García-Garizábal I, Causapé J, Abrahao R (2012). Nitrate contamination and its relationship with flood irrigation management. J. Hydrol. 442: 15¿22. García-Tejero IF, Durán-Zuazo VH, Muriel-Fernández JL, Rodríguez-Pleguezuelo CR (2011). Water and sustainable agriculture - SpringerBriefs in Agriculture. Springer Netherlands. Gasso V, Sørensen CAG, Oudshoorn FW, Green O (2013). Controlled traffic farming: A review of the environmental impacts. Eur. J. Agron. 48: 66¿73. Gellis AC (2013). Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico. Catena 104: 39¿57. Giménez R, Casalí J, Grande I, Díez J, Campo MA, Álvarez-Mozos J, et al. (2012). Factors controlling sediment export in a small agricultural watershed in Navarre (Spain). Agric. Water Manag. 110: 1¿8. Gómez JA, Giráldez JV (2009). Erosión y degradación de suelos. In: Sostenibilidad de la producción en olivar en Andalucía, Consejería de Agricultura y Pesca, Junta de Andalucía: Sevilla, pp 45¿88. Gómez J, Sobrinho T, Giráldez J, Fereres E (2009). Soil management effects on runoff, erosion and soil properties in an olive grove of Southern Spain. Soil Tillage Res. 102: 5¿13. Gómez-Limón JA, Berbel J, Gutierrez C (2007). Multifuncionalidad del regadío: una aproximación empírica. In: Gómez-Limón JA, Barreiro Hurlé J (eds) La multifuncionalidad de la agricultura en España, Eumedia / Ministerio Agricultura, Pesca y Alimentación: Madrid, pp 207¿224. Gómez-Limón JA, Picazo-Tadeo AJ, Reig-Martínez E (2012). Eco-efficiency assessment of olive farms in Andalusia. L. Use Policy 29: 395¿406. Gómez-Limón JA, Riesgo L (2010). Sustainability assessment of olive grove in Andalusia: A methodological proposal. In: 120th EAAE Seminar ¿External Cost of Farming Activities: Economic Evaluation, Environmental Repercussions and Regulatory Framework,¿ Chania. Gómez-Macpherson H, Boulal H, Mrabet R, González E (2009). Rational and application of CA for irrigated production in Southern Europe and North Africa. In: 4th World Congress on Conservation Agriculture, New Delhi, India, pp 129¿135. González-Sánchez EJ, Ordóñez-Fernández R, Carbonell-Bojollo R, Veroz-González O, Gil-Ribes JA (2012). Meta-analysis on atmospheric carbon capture in Spain through the use of conservation agriculture. Soil Tillage Res. 122: 52¿60. Govaerts B, Sayre KD, Ceballos-Ramirez JM, Luna-Guido ML, Limon-Ortega A, Deckers J, et al. (2006). Conventionally tilled and permanent raised beds with different crop residue management: effects on soil C and N dynamics. Plant Soil 280: 143¿155. Govaerts B, Sayre KD, Deckers J (2005). Stable high yields with zero tillage and permanent bed planting? F. Crop. Res. 94: 33¿42. Govaerts B, Verhulst N, Castellanos-Navarrete A, Sayre KD, Dixon J, Dendooven L (2009). Conservation agriculture and soil carbon sequestration: between myth and farmer reality. CRC. Crit. Rev. Plant Sci. 28: 97¿122. Govers G, Poesen J (1988). Assessment of the interrill and rill contributions to total soil loss from an upland field plot. Geomorphology 1: 343¿354. Håkansson I, Voorhees WB, Riley H (1988). Vehicle and wheel factors influencing soil compaction and crop response in different traffic regimes. Soil Tillage Res. 11: 239¿282. Hamza MA, Anderson WK (2005). Soil compaction in cropping systems. Soil Tillage Res. 82: 121¿145. Hatfield JL, Sauer TJ, Prueger JH (2001). Managing soils to achieve greater water use efficiency: a review. Agron. J. 280: 271¿280. He J, Li H, McHugh AD, Ma Z, Cao X, Wang Q, et al. (2008). Spring wheat performance and water use efficiency on permanent raised beds in arid northwest China. Soil Res. 46: 659¿666. Heard JR, Kladivko EJ, Mannering JV (1988). Soil macroporosity, hydraulic conductivity and air permeability of silty soils under long-term conservation tillage in Indiana. Soil Tillage Res. 11: 1¿18. Hernanz JL, López R, Navarrete L, Sánchez-Girón V (2002). Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Tillage Res. 66: 129¿141. Hernanz JL, Sánchez-Girón V, Navarrete L (2009). Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric. Ecosyst. Environ. 133: 114¿122. Hobbs PR, Sayre KD, Gupta R (2008). The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 543¿55. House GJ, Parmelee RW (1985). Comparison of soil arthropods and earthworms from conventional and no-tillage agroecosystems. Soil Tillage Res. 5: 351¿360. Howell TA, Schneider AD, Dusek DA (2002). Effects of furrow diking on corn response to limited and full sprinkler irrigation. Soil Sci. Soc. Am. J. 66: 222¿227. Hulugalle NR, Daniells IG (2005). Permanent beds in australian cotton production systems. In: Roth CH, Fischer RA, Meisner CA (eds) Evaluation and performance of permanent raised bed cropping systems in Asia, Australia and Mexico. ACIAR proceedings No. 21, ACIAR: Griffith, NSW, Australia Vol 121, pp 162¿172. Hulugalle NR, Weaver TB, Finlay LA (2010). Drainage under permanent beds in a furrow-irrigated Vertisol. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, pp 21¿24. Ibragimov N, Evett SR, Esenbekov Y, Khasanova F, Karabaev I, Mirzaev L, et al. (2011). Permanent beds vs. conventional tillage in irrigated arid Central Asia. Agron. J. 103: 1002¿1011. Isidoro D, Quílez D, Aragüés R (2006). Environmental impact of irrigation in La Violada district (Spain). J. Environ. Qual. 35: 766¿775. Isidoro D, Qu¿¿lez D, Aragüés R (2004). Water balance and irrigation performance analysis: La Violada irrigation district (Spain) as a case study. Agric. Water Manag. 64: 123¿142. IUSS (2006). World reference base for soil resources 2006. World Soil Resources Reports No. 103 (FAO, Ed.). Rome. Johannsen SS, Armitage P (2010). Agricultural practice and the effects of agricultural land-use on water quality. Freshw. Forum 28: 45¿59. Johnson LC (1987). Soil loss tolerance: Fact or myth? J. Soil Water Conserv. 42: 155¿160. Jordán A, Zavala LM, Gil J (2010). Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81: 77¿85. Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, et al. (1994). Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res. 31: 149¿167. Kaspar TC, Brown HJ, Kassmeyer EM (1991). Corn root distribution as affected by tillage, wheel traffic, and fertilizer placement. Soil Sci. Soc. Am. J. 55: 1390¿1394. Kätterer T, Bolinder MA, Andrén O, Kirchmann H, Menichetti L (2011). Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric. Ecosyst. Environ. 141: 184¿192. Kautz T, Stumm C, Kösters R, Köpke U (2010). Effects of perennial fodder crops on soil structure in agricultural headlands. J. Plant Nutr. Soil Sci. 173: 490¿501. Keller J, Bliesner RD (1990). Sprinkler and trickle irrigation. Chapman & Hall: New York. Khaledian MR, Mailhol JC, Ruelle P, Mubarak I, Maraux F (2010). Nitrogen balance and irrigation water productivity for corn, sorghum and durum wheat under direct seeding into mulch when compared with conventional tillage in the southeastern France. Irrig. Sci. 29: 413¿422. Kingwell R, Fuchsbichler A (2011). The whole-farm benefits of controlled traffic farming: an australian appraisal. Agric. Syst. 104: 513¿521. Kirkegaard JA, Conyers MK, Hunt JR, Kirkby CA, Watt M, Rebetzke GJ (2013). Sense and nonsense in conservation agriculture: Principles, pragmatism and productivity in Australian mixed farming systems. Agric. Ecosyst. Environ. Laboski CAM, Dowdy RH, Allmaras RR, Lamb JA (1998). Soil strength and water content influences on corn root distribution in a sandy soil. Plant Soil 203: 239¿247. Lal R (2010). Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Secur. 2: 169¿177. Lal R, Shukla MK (2004). Principles of Soil Physics. Marcel Dekker, Inc.: New York. Lampurlanés J, Angás P, Cantero-Mart¿¿nez C (2001). Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. F. Crop. Res. 69: 27¿40. Latron J, Gallart F (2007). Seasonal dynamics of runoff-contributing areas in a small mediterranean research catchment (Vallcebre, Eastern Pyrenees). J. Hydrol. 335: 194¿206. Lee J, Hopmans JW, van Kessel C, King AP, Evatt KJ, Louie D, et al. (2009). Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a mediterranean climate. Agric. Ecosyst. Environ. 129: 378¿390. Leys A, Govers G, Gillijns K, Berckmoes E, Takken I (2010). Scale effects on runoff and erosion losses from arable land under conservation and conventional tillage: The role of residue cover. J. Hydrol. 390: 143¿154. Li L, Du S, Wu L, Liu G (1987). An overview of soil loss tolerance. Catena 78: 93¿99. Liebig MA, Jones AJ, Doran JW, Mielke LN (1995). Potential soil respiration and relationship to soil properties in ridge tillage. Soil Sci. Soc. Am. J. 59: 1430¿1435. Liebig MA, Jones AJ, Mielke LN, Doran JW (1993). Controlled wheel traffic effects on soil properties in ridge tillage. Soil Sci. Soc. Am. J. 57: 1061¿1066. Liebman M, Dyck E (1993). Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3: 92¿122. Limon-Ortega A, Govaerts B, Deckers J, Sayre KD (2006). Soil aggregate and microbial biomass in a permanent bed wheat¿maize planting system after 12 years. F. Crop. Res. 97: 302¿309. López-Bellido RJ, Fontán JM, López-Bellido FJ, López-Bellido L (2010). Carbon sequestration by tillage, rotation, and nitrogen fertilization in a mediterranean vertisol. Agron. J. 102: 310¿318. López-Fando C, Dorado J, Pardo MT (2007). Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain. Soil Tillage Res. 95: 266¿276. López-Fando C, Pardo MT (2011). Soil carbon storage and stratification under different tillage systems in a semi-arid region. Soil Tillage Res. 111: 224¿230. López-Fando C, Pardo MT (2012). Use of a partial-width tillage system maintains benefits of no-tillage in increasing total soil nitrogen. Soil Tillage Res. 118: 32¿39. López-Garrido R, Deurer M, Madejón E, Murillo JM, Moreno F (2012). Tillage influence on biophysical soil properties: the example of a long-term tillage experiment under mediterranean rainfed conditions in south Spain. Soil Tillage Res. 118: 52¿60. López-Garrido R, Díaz-Espejo A, Madejón E, Murillo JM, Moreno Lucas F (2009). Carbon losses by tillage under semi-arid Mediterranean rainfed agriculture (SW Spain). Spanish J. Agric. Res. 73: 706¿716. López-Garrido R, Madejón E, Murillo JM, Moreno F (2011). Soil quality alteration by mouldboard ploughing in a commercial farm devoted to no-tillage under mediterranean conditions. Agric. Ecosyst. Environ. 140: 182¿190. Luo Z, Wang E, Sun OJ (2010). Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric. Ecosyst. Environ. 139: 224¿231. Lupwayi NZ, Rice WA, Clayton GW (1998). Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem. 30: 1733¿1741. Madejón E, Murillo JM, Moreno F, López MV, Arrue JL, Álvaro-Fuentes J, et al. (2009). Effect of long-term conservation tillage on soil biochemical properties in mediterranean spanish areas. Soil Tillage Res. 105: 55¿62. Maetens W, Poesen J, Vanmaercke M (2012). How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Science Rev. 115: 21¿36. MAGRAMA (2012). Encuesta sobre superficies y rendimientos de cultivos. Ministerio de Agricultura, Alimentación y Medio Ambiente. Gobierno de España. Madrid. MAGRAMA (2013). Superficie y producción de cultivos. Minist. Agric. Aliment. y Medio Ambient. Gob. España. Anu. estadística 2011 (Datos 2010 y 2011). Mahrer Y, Avissar R (1985). A numerical study of the effects of soil surface shape upon the soil temperature and moisture regimes. Soil Sci. 139: 483¿490. Martens DA (2001). Nitrogen cycling under different soil management systems. In: Sparks DL (ed) Advances in Agronomy, Academic Press Vol 70, pp 143¿192. Martin DL, Stegman EC, Fereres E (1990). Irrigation scheduling principles. In: Hoffman GH, Howell TA, Solomon KH (eds) agement of farm irrigation systems, American Society of Agricultural Engineers: St. Joseph, pp 153¿203. Materechera SA, Dexter AR, Alston AM (1991). Penetration of very strong soils by seedling roots of different plant species. Plant Soil 135: 31¿41. Melero S, López-Bellido RJ, López-Bellido L, Muñoz-Romero V, Moreno F, Murillo JM (2011). Long-term effect of tillage, rotation and nitrogen fertiliser on soil quality in a mediterranean vertisol. Soil Tillage Res. 114: 97¿107. Molden D, Gates T (1990). Performance measures for evaluation of irrigation water delivery systems. J. Irrig. Drain. Eng. 116: 804¿823. Morell FJ, Álvaro-Fuentes J, Lampurlanés J, Cantero-Martínez C (2010). Soil CO2 fluxes following tillage and rainfall events in a semiarid mediterranean agroecosystem: effects of tillage systems and nitrogen fertilization. Agric. Ecosyst. Environ. 139: 167¿173. Morell FJ, Lampurlanés J, Álvaro-Fuentes J, Cantero-Martínez C (2011). Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: Long-term effects of tillage and N fertilization. Soil Tillage Res. 117: 76¿84. Moreno F, Cayuela JA, Fernández JE, Fernández-Boy E, Murillo JM, Cabrera F (1996). Water balance and nitrate leaching in an irrigated maize crop in SW Spain. Agric. Water Manag. 32: 71¿83. Moreno F, Murer EJ, Stenitzer E, Fernández JE, Girón IF (2003). Simulation of the impact of subsoil compaction on soil water balance and crop yield of irrigated maize on a loamy sand soil in SW Spain. Soil Tillage Res. 73: 31¿41. Mosaddeghi MR, Mahboubi AA, Safadoust A (2009). Short-term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil Tillage Res. 104: 173¿179. Moussadek R, Mrabet R, Dahan R, Douaik A, Verdoodt A, van Ranst E (2011). Effect of tillage practices on the soil carbon dioxide flux during fall and spring seasons in a mediterranean vertisol. J. Soil Sci. Environ. Manag. 2: 362¿369. Müller E, Wildhagen H, Quintern M, Heß J, Wichern F, Joergensen RG (2009a). CO2 evolution from a ridge tilled and a mouldboard ploughed luvisol in the field. Appl. Soil Ecol. 43: 89¿94. Müller E, Wildhagen H, Quintern M, Heß J, Wichern F, Joergensen RG (2009b). Spatial patterns of soil biological and physical properties in a ridge tilled and a ploughed luvisol. Soil Tillage Res. 105: 88¿95. Muñoz A, López-Piñeiro A, Ramírez M (2007). Soil quality attributes of conservation management regimes in a semi-arid region of south western Spain. Soil Tillage Res. 95: 255¿265. Muñoz-Romero V, Benítez-Vega J, López-Bellido L, López-Bellido RJ (2010). Monitoring wheat root development in a rainfed vertisol: tillage effect. Eur. J. Agron. 33: 182¿187. Murillo JM, Moreno F, Girón IF, Oblitas MI (2004). Conservation tillage¿: long term effect on soil and crops under rainfed conditions in south-west Spain (Western Andalusia). Spanish J. Agric. Res. 2: 35¿43. Murray RS, Grant CD (2007). The impact of irrigation on soil structure. The National Program for Sustainable Irrigation (Land & Water Australia). Nakadai T, Yokozawa M, Ikeda H, Koizumi H (2002). Diurnal changes of carbon dioxide flux from bare soil in agricultural field in Japan. Appl. Soil Ecol. 19: 161¿171. Naor A (2006). Irrigation scheduling and evaluation of tree water status in deciduous orchards. In: Janick J (ed) Horticultural Reviews, Volume 32, John Wiley & Sons, Inc., pp 111¿165. Nearing MA, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, et al. (2005). Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61: 131¿154. Nunes AN, de Almeida AC, Coelho COA (2011). Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 31: 687¿699. Orchard VA, Cook FJ (1983). Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 15: 447¿453. Ordóñez-Fernández R, González Fernández P, Giráldez JV, Perea Torres F (2007). Soil properties and crop yields after 21 years of direct drilling trials in southern Spain. Soil Tillage Res. 94: 47¿54. Ordóñez-Fernández R, Rodríguez-Lizana A, Carbonell R, González P, Perea F (2007). Dynamics of residue decomposition in the field in a dryland rotation under Mediterranean climate conditions in southern Spain. Nutr. Cycl. Agroecosystems 79: 243¿253. Panettieri M, Carmona I, Melero S, Madejón E, Gómez-Macpherson H (2013). Effect of permanent bed planting combined with controlled traffic on soil chemical and biochemical properties in irrigated semi-arid Mediterranean conditions. Catena 107: 103¿109. Parry M, Rosenzweig C, Livermore M (2005). Climate change, global food supply and risk of hunger. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360: 2125¿38. Parsons AJ, Brazier RE, Wainwright J, Powell DM (2006). Scale relationships in hillslope runoff and erosion. Earth Surf. Process. Landforms 31: 1384¿1393. Passioura JB (2002). Soil conditions and plant growth. Plant Cell Environ. 25: 311¿318. Pérez-Priego O, Testi L, Orgaz F, Villalobos FJ (2010). A large closed canopy chamber for measuring CO2 and water vapour exchange of whole trees. Environ. Exp. Bot. 68: 131¿138. Pierce FJ, Fortin M-C, Staton MJ (1992). Immediate and residual effects of zone-tillage in rotation with no-tillage on soil physical properties and corn performance. Soil Tillage Res. 24: 149¿165. Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, et al. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science (80-. ). 267: 1117¿1123. Pinheiro J, Bates D, DebRoy S, Sarkar D, R-Development-Core-Team (2010). nlme: Linear and Nonlinear Mixed Effects Models. R Packag. version 3.1-97. De Ploey J (1989). Erosional systems and perspectives for erosion control in European loess areas. Soil Technol. Ser.: 93¿102. Porta J, López-Acevedo M, Roquero C (1999). Edafología para la agricultura y el medio ambiente, 2nd edn. Ediciones Mundi-Prensa. Puustinen M, Tattari S, Koskiaho J, Linjama J (2007). Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil Tillage Res. 93: 44¿55. RAEA (2006). Red Andaluza de Experimentación Agraria. Variedades Comerciales de Algodón. Campaña 2006. Junta de Andalucía. RAEA (2007). Red Andaluza de Experimentación Agraria. Variedades Comerciales de Maíz. Campaña 2007. Junta de Andalucía. Ram H, Singh Y, Saini KS, Kler DS, Timsina J, Humphreys EJ (2012). Agronomic and economic evaluation of permanent raised beds, no tillage and straw mulching for an irrigated maize-wheat system in northwest India. Exp. Agric. 48: 21¿38. Raper RL, Kirby JM (2006). Soil compaction: how to do it, undo it, or avoid doing it. In: 2006 Agriculture Equipment Technology Conference, ASABE: Louisville, Kentucky, USA. Raper RL, Reeves DW, Burmester CH, Schawb EB (2000). Tillage depth, tillage timing and cover crop effects on cotton yield, soil strength and tillage energy requirements. Appl. Eng. Agric. 16: 379¿385. Raper RL, Reeves DW, Shaw JN, van Santen E, Mask PL (2007). Benefits of site-specific subsoiling for cotton production in Coastal Plain soils. Soil Tillage Res. 96: 174¿181. Rasse DP, Smucker AJM (1998). Root recolonization of previous root channels in corn and alfalfa rotations. Plant Soil 204: 203¿212. Reicosky DC, Archer DW (2007). Moldboard plow tillage depth and short-term carbon dioxide release. Soil Tillage Res. 94: 109¿121. Reicosky DC, Dugas WA, Torbert HA (1997). Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Tillage Res. 41: 105¿118. Reicosky DC, Gesch RW, Wagner SW, Gilbert RA, Wente CD, Morris DR (2008). Tillage and wind effects on soil CO2 concentrations in muck soils. Soil Tillage Res. 99: 221¿231. Reicosky DC, Lindstrom MJ (1993). Fall tillage method: effect on short-term carbon dioxide flux from soil. Agron. J. 85: 1237¿1243. Dos Reis Castro NM, Auzet A-V, Chevallier P, Leprun J-C (1999). Land use change effects on runoff and erosion from plot to catchment scale on the basaltic plateau of Southern Brazil. Hydrol. Process. 13: 1621¿1628. Renard KG, Foster GR, Weesies GA, Porter JP (1991). RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 46: 30¿33. Ritchie JT (1981). Soil water availability. Plant Soil 58: 327¿338. Rochester IJ (2011). Sequestering carbon in minimum-tilled clay soils used for irrigated cotton and grain production. Soil Tillage Res. 112: 1¿7. Rochette P, Angers DA (1999). Soil surface carbon dioxide fluxes induced by spring, summer, and fall moldboard plowing in a sandy loam. Soil Sci. Soc. Am. J. 63: 621¿628. Rochette P, Bertrand N (2008). Soil-surface gas emissions. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, Canadian Society of Soil Science: Florida, USA, pp 851¿861. Salmerón M, Isla R, Cavero J (2011). Effect of winter cover crop species and planting methods on maize yield and N availability under irrigated mediterranean conditions. F. Crop. Res. 123: 89¿99. De Sanctis G, Roggero PP, Seddaiu G, Orsini R, Porter CH, Jones JW (2012). Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a mediterranean area. Eur. J. Agron. 40: 18¿27. Sauer TJ, Horton R (2005). Soil heat flux. In: Hatfield JL, Baker JM, Viney MK (eds) Micrometeorology in Agricultural Systems, AGRONOMY series No. 47, American Society of Agronomy,Crop Science Society of America, Soil Science Society of America: Madison, Wisconsin, USA, pp 131¿154. Sayre KD, Limon-Ortega A, Govaerts B (2005). Experiences with permanent bed planting systems CIMMYT/Mexico. In: Evaluation and performance of permanent raised bed cropping systems in Asia, Australia and Mexico, ACIAR: Griffith, pp 12¿25. La Scala Jr. N, Bolonhezi D, Pereira GT (2006). Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil Tillage Res. 91: 244¿248. Schmidhuber J, Tubiello FN (2007). Global food security under climate change. Proc. Natl. Acad. Sci. U. S. A. 104: 19703¿8. Schwager SJ, Mikhailova EA (2002). Estimating variability in soil organic carbon storage using the method of statistical differentials. Soil Sci. 167: 194¿200. SCS (1972). Section 4: Hidrology. National Engineering Handbook. Soil Conservation Service. United States Department of Agriculture: Washington D.C. Seeger M, Errea M-P, Beguer¿¿a S, Arnáez J, Mart¿¿ C, Garc¿¿a-Ruiz JM (2004). Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish pyrenees. J. Hydrol. 288: 299¿311. Shi XH, Yang XM, Drury CF, Reynolds WD, McLaughlin NB, Zhang XP (2012). Impact of ridge tillage on soil organic carbon and selected physical properties of a clay loam in southwestern Ontario. Soil Tillage Res. 120: 1¿7. Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (Eds.) (2000). Root methods. A handbook. Springer Berlin Heidelberg. Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012). No-till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118: 66¿87. Soane BD, Blackwell PS, Dickson JW, Painter DJ (1980a). Compaction by agricultural vehicles: A review I. Soil and wheel characteristics. Soil Tillage Res. 1: 207¿237. Soane BD, Blackwell PS, Dickson JW, Painter DJ (1980b). Compaction by agricultural vehicles: A review II. Compaction under tyres and other running gear. Soil Tillage Res. 1: 373¿400. Soane BD, Dickson JW, Campbell DJ (1982). Compaction by agricultural vehicles: A review III. Incidence and control of compaction in crop production. Soil Tillage Res. 2: 3¿36. Soane BD, van Ouwerkerk C (1995). Implications of soil compaction in crop production for the quality of the environment. Soil Tillage Res. 35: 5¿22. Soil Survey Staff (2010). Keys to soil taxonomy, 11th edn. USDA-NRCS. Soler M, Latron J, Gallart F (2008). Relationships between suspended sediment concentrations and discharge in two small research basins in a mountainous Mediterranean area (Vallcebre, Eastern Pyrenees). Geomorphology 98: 143¿152. Song Z, Guo J, Zhang Z, Kou T, Deng A, Zheng C, et al. (2013). Impacts of planting systems on soil moisture, soil temperature and corn yield in rainfed area of Northeast China. Eur. J. Agron. 50: 66¿74. Stamey WL, Smith RM (1964). A conservation definition of erosion tolerance. Soil Sci. 97: 183¿186. Steegen A, Govers G, Nachtergaele J, Takken I, Beuselinck L, Poesen J (2000). Sediment export by water from an agricultural catchment in the Loam Belt of central Belgium. Geomorphology 33: 25¿36. Stirzaker RJ, Passioura JB, Wilms Y (1996). Soil structure and plant growth: Impact of bulk density and biopores. Plant Soil 185: 151¿162. Taguas EV, Ayuso JL, Peña A, Yuan Y, Pérez R (2009). Evaluating and modelling the hydrological and erosive behaviour of an olive orchard microcatchment under no-tillage with bare soil in Spain. Earth Surf. Process. Landforms 34: 738¿751. Taguas EV, Ayuso JL, Pérez R, Giráldez JV, Gómez JA (2013). Intra and inter-annual variability of runoff and sediment yield of an olive micro-catchment with soil protection by natural ground cover in southern Spain. Geoderma 206: 49¿62. Taguas EV, Peña A, Ayuso JL, Pérez R, Yuan Y, Giráldez JV (2010). Rainfall variability and hydrological and erosive response of an olive tree microcatchment under no-tillage with a spontaneous grass cover in Spain. Earth Surf. Process. Landforms 35: 750¿760. Tardieu F (1988). Analysis of the spatial variability of maize root density I. Effect of wheel compaction on the spatial arrangement of roots. Plant Soil 107: 259¿266. Taylor JH (1983). Benefits of permanent traffic lanes in a controlled traffic crop production system. Soil Tillage Res. 3: 385¿395. Taylor HM, Brar GS (1991). Effect of soil compaction on root development. Soil Tillage Res. 19: 111¿119. Taylor HM, Gardner HR (1960a). Use of wax substrates in root penetration studies. Soil Sci. Soc. Am. J. 27: 79¿81. Taylor HM, Gardner HR (1960b). Relative penetrating ability of different plant roots. Agron. J. 52: 579¿581. Taylor HM, Gardner HR (1963). Penetration of cotton seedling taproots as influenced by bulk density, moisture content, and strength of soil. Soil Sci. 96: 153¿156. Tisdall JM, Hodgson AS (1990). Ridge tillage in Australia: a review. Soil Tillage Res. 18: 127¿144. Tolk JA, Howell TA, Evett SR (1999). Effect of mulch, irrigation, and soil type on water use and yield of maize. Soil Tillage Res. 50: 137¿147. Tolon-Becerra A, Tourn M, Botta GF, Lastra-Bravo X (2011). Effects of different tillage regimes on soil compaction, maize (Zea mays L.) seedling emergence and yields in the eastern Argentinean Pampas region. Soil Tillage Res. 117: 184¿190. Tullberg J (2010). Tillage, traffic and sustainability¿A challenge for ISTRO. Soil Tillage Res. 111: 26¿32. Tullberg JN, Yule DF, McGarry D (2007). Controlled traffic farming¿From research to adoption in Australia. Soil Tillage Res. 97: 272¿281. USDA/NRCS (1999). National soil survey handbook, title 430-VI. Available online at http://soils.usda.gov/technical/handbook/. USDA/NRCS (2004). Hydrologic soil-cover complex. In: Part 630 Hydrology National Engineering Handbook2, De Vente J, Poesen J (2005). Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth-Science Rev. 71: 95¿125. Verhulst N, Carrillo-García A, Moeller C, Trethowan R, Sayre KD, Govaerts B (2011). Conservation agriculture for wheat-based cropping systems under gravity irrigation: increasing resilience through improved soil quality. Plant Soil 340: 467¿479. Verhulst N, Govaerts B, Verachtert E, Castellanos-Navarrete A, Mezzalama M, Wall P, et al. (2010). Conservation Agriculture. Improving soil quality for sustainable production systems? In: Lal R, Stewart BA (eds) Advances in Soil Science: Food Security and Soil Quality, CRC Press: Boca Raton, FL, USA, pp 137¿208. Verhulst N, Kienle F, Sayre KD, Deckers J, Raes D, Limon-Ortega A, et al. (2010). Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil 340: 453¿466. Virto I, Barré P, Burlot A, Chenu C (2012). Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108: 17¿26. Volkmar KM, Entz T (1995). A method for characterizing the effect of root-formed pores on growth of roots in a Chernozemic clay loam. Can. J. Soil Sci. 75: 293¿298. Wainwright J, Parsons AJ, Müller EN, Brazier RE, Powell DM, Fenti B (2008). A transport-distance approach to scaling erosion rates: 1. Background and model development. Earth Surf. Process. Landforms 33: 813¿826. Walkley A, Black JA (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29¿38. Wang X, Dai K, Zhang D, Zhang X, Wang Y, Zhao Q, et al. (2011). Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. F. Crop. Res. 120: 47¿57. West TO, Post WM (2002). Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am. J. 66: 1930¿1946. Whalley WR, Dumitru E, Dexter AR (1995). Biological effects of soil compaction. Soil Tillage Res. 35: 53¿68. Wichern F, Luedeling E, Müller T, Joergensen RG, Buerkert A (2004). Field measurements of the CO2 evolution rate under different crops during an irrigation cycle in a mountain oasis of Oman. Appl. Soil Ecol. 25: 85¿91. Willems AB, Augustenborg CA, Hepp S, Lanigan G, Hochstrasser T, Kammann C, et al. (2011). Carbon dioxide emissions from spring ploughing of grassland in Ireland. Agric. Ecosyst. Environ. 144: 347¿351. Williams GP (1989). Sediment concentration versus water discharge during single hydrologic events in rivers. J. Hydrol. 111: 89¿106. Williams JR (1991). Runoff and water erosion. In: Hanks J, Ritchie JT (eds) Modeling Plant and Soil Systems, ASA¿CSSA¿SSSA: Madison, pp 439¿455. Williams SM, Weil RR (2004). Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci. Soc. Am. J. 68: 1403¿1409. Wood RK, Morgan MT, Holmes RG, Brodbeck KN, Carpenter TG, Reeder RC (1991). Soil physical properties as affected by traffic. Single, dual, and flotation tires. Trans. Am. Soc. Agric. Eng. 34: 2363¿2369. Wuest SB, Durr D, Albrecht SL (2003). Carbon dioxide flux measurement during simulated tillage. Agron. J. 95: 715¿718. Zhang H, Wang X, Feng Z, Pang J, Lu F, Ouyang Z, et al. (2011). Soil temperature and moisture sensitivities of soil CO2 efflux before and after tillage in a wheat field of Loess Plateau, China. J. Environ. Sci. 23: 79¿86. Zhang H, Zhou X, Lu F, Pang J, Feng Z, Liu W, et al. (2011). Seasonal dynamics of soil CO2 efflux in a conventional tilled wheat field of the Loess Plateau, China. Ecol. Res. 26: 735¿743.