El rol del maestro en indagaciones escolares mediante simulaciones

  1. Solé-Llussà, Anna 1
  2. Aguilar Caamaño, David 1
  3. Ibáñez Plana, Manuel 1
  1. 1 Universitat de Lleida (España)
Revista:
Edutec: Revista electrónica de tecnología educativa

ISSN: 1135-9250

Año de publicación: 2020

Título del ejemplar: Codiseño de situaciones educativas enriquecidas con TIC

Número: 74

Páginas: 221-233

Tipo: Artículo

DOI: 10.21556/EDUTEC.2020.74.1803 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Edutec: Revista electrónica de tecnología educativa

Resumen

En la didáctica de las ciencias experimentales las simulaciones mediante ordenador permiten a los estudiantes de primaria indagar fenómenos naturales sobre los que difícilmente podrían experimentar manipulativamente. Las simulaciones ayudan a mejorar el aprendizaje de los estudiantes, pero la mayor parte de la literatura sobre simulaciones no considera el papel de los maestros en estas indagaciones con experimentación virtual. Este trabajo de revisión sintetiza los principales resultados prácticos ofrecidos por las 8 investigaciones disponibles en la literatura. Todos ellos basados en simulaciones libremente disponibles en las plataformas PhET Simulations y Concorde Consortium. La revisión concluye que faltan estudios integrados en su contexto curricular y estudios comparativos, en cuanto al papel del maestro, entre indagaciones tradicionales y mediante simulación. Finalmente se sugiere la oportunidad de desarrollar una biblioteca organizada y completa de simulaciones indagadoras para educación primaria.

Referencias bibliográficas

  • Chamberlain, J. M., Lancaster, K., Parson, R., & Perkins, K. K. (2014). How guidance affects student engagement with an interactive simulation. Chemistry Education Research and Practice, 15(4), 628–638. https://doi.org/10.1039/c4rp00009a
  • De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201. https://doi.org/10.3102/00346543068002179
  • Dean, D., & Kuhn, D. (2007). Direct instruction vs. Discovery: The long view. Science Education, 91(3), 384–397. https://doi.org/10.1002/sce.20194
  • Dobber, M., Zwart, R., Tanis, M., & van Oers, B. (2017). Literature review: The role of the teacher in inquiry-based education. In Educational Research Review (Vol. 22, pp. 194–214). Elsevier Ltd. https://doi.org/10.1016/j.edurev.2017.09.002
  • Easley, K. M. (2020). Simulations and Sensemaking in Elementary Project-Based Science. Ph.D.Dissertation http://hdl.handle.net/2027.42/155050
  • Ekmekci, A., & Gulacar, O. (2015). A case study for comparing the effectiveness of a computer simulation and a hands-on activity on learning electric circuits. Eurasia Journal of Mathematics, Science and Technology Education, 11(4), 765–775. https://doi.org/10.12973/eurasia.2015.1438a
  • Evolution Readiness – Concord Consortium. (n.d.). Retrieved August 10, 2020, from https://concord.org/our-work/research-projects/evolution-readiness/
  • Hennessy, S., Deaney, R., & Ruthven, K. (2006). Situated expertise in integrating use of multimedia simulation into secondary science teaching. International Journal of Science Education, 28(7), 701–732. https://doi.org/10.1080/09500690500404656
  • Horwitz, P. (2013). Evolution Is a Model, Why Not Teach It That Way? In D. F. Treagust & C-Y. Tsui (Ed.), Multiple representations in biological education (pp. 129–145). Springer. https://doi.org/10.1007/978-94-007-4192-8_8
  • Horwitz, P., McIntyre, C. A., Lord, T. L., O’Dwyer, L. M., & Staudt, C. (2013). Teaching “Evolution readiness” to fourth graders. Evolution: Education and Outreach, 6(1), 21. https://doi.org/10.1186/1936-6434-6-21
  • Hulshof, C. D., & de Jong, T. (2006). Using just-in-time information to support scientific discovery learning in a computer-based simulation. Interactive Learning Environments, 14(1), 79–94. https://doi.org/10.1080/10494820600769171
  • Kruit, P. M., Oostdam, R. J., van den Berg, E., & Schuitema, J. A. (2018). Effects of explicit instruction on the acquisition of students’ science inquiry skills in grades 5 and 6 of primary education. International Journal of Science Education, 40(4), 421–441. https://doi.org/10.1080/09500693.2018.1428777
  • Kukkonen, J. E., Kärkkäinen, S., Dillon, P., & Keinonen, T. (2014). The Effects of Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders’ Representations of the Greenhouse Effect. International Journal of Science Education, 36(3), 406–424. https://doi.org/10.1080/09500693.2013.782452
  • Lehtinen, A., Lehesvuori, S., & Viiri, J. (2019). The Connection Between Forms of Guidance for Inquiry-Based Learning and the Communicative Approaches Applied—a Case Study in the Context of Pre-service Teachers. Research in Science Education, 49(6), 1547–1567. https://doi.org/10.1007/s11165-017-9666-7
  • Lehtinen, A., & Viiri, J. (2017). Guidance Provided by Teacher and Simulation for Inquiry-Based Learning: a Case Study. Journal of Science Education and Technology, 26(2), 193–206. https://doi.org/10.1007/s10956-016-9672-y
  • Manz, E. (2015). Resistance and the Development of Scientific Practice: Designing the Mangle Into Science Instruction. Cognition and Instruction, 33(2), 89–124. https://doi.org/10.1080/07370008.2014.1000490
  • Mclntyre, C., Lord, T., & Horwitz, P. (2012). BIG IDEAS for Little People. Science and Children, 50(2), 42–45. www.jstor.org/stable/43176252
  • Moore, E. B., Chamberlain, J. M., Parson, R., & Perkins, K. K. (2014). PhET interactive simulations: Transformative tools for teaching chemistry. Journal of Chemical Education, 91(8), 1191–1197. https://doi.org/10.1021/ed4005084
  • PhET: Free online physics, chemistry, biology, earth science and math simulations. (n.d.). Retrieved August 10, 2020, from https://phet.colorado.edu/
  • Puntambekar, S., Stylianou, A., & Goldstein, J. (2007). Comparing Classroom Enactments of an Inquiry Curriculum: Lessons Learned From Two Teachers. Journal of the Learning Sciences, 16(1), 81–130. https://doi.org/10.1080/10508400709336943
  • Rutten, N., Van Joolingen, W.R., & Van Der Veen, J. T. (2012) The learning effects of computer simulations in science education. Computers and Education 58(1), 136-153. http://dx.doi.org/10.1016/j.compedu.2011.07.017
  • Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. S. (2011). Student learning in science simulations: Design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1050–1078. https://doi.org/10.1002/tea.20437
  • Smetana, L. K., & Bell, R. L. (2012). Computer Simulations to Support Science Instruction and Learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370. https://doi.org/10.1080/09500693.2011.605182
  • Solé-Llussà, A., Aguilar, D., & Ibáñez, M. (2020). Vídeo-worked examples to support the development of elementary students’ science process skills: a case study in an inquiry activity on electrical circuits. Research in Science & Technological Education, 1–21. https://doi.org/10.1080/02635143.2020.1786361
  • Stephens, A. L., & Clement, J. J. (2015). Use of physics simulations in whole class and small group settings: Comparative case studies. Computers and Education, 86, 137–156. https://doi.org/10.1016/j.compedu.2015.02.014
  • Wieman, C. E., Adams, W. K., Loeblein, P., & Perkins, K. K. (2010). Teaching Physics Using PhET Simulations. The Physics Teacher, 48(4), 225–227. https://doi.org/10.1119/1.3361987
  • Wu, H. L., & Pedersen, S. (2011). Integrating computer- and teacher-based scaffolds in science inquiry. Computers and Education, 57(4), 2352–2363. https://doi.org/10.1016/j.compedu.2011.05.011