Puiseux Integrability of Differential Equations

  1. Demina, Maria V. 1
  2. Giné, Jaume 2
  3. Valls, Claudia 3
  1. 1 Higher School of Economics, National Research University
    info

    Higher School of Economics, National Research University

    Moscú, Rusia

    ROR https://ror.org/055f7t516

  2. 2 Universitat de Lleida
    info

    Universitat de Lleida

    Lleida, España

    ROR https://ror.org/050c3cw24

  3. 3 Universidade de Lisboa
    info

    Universidade de Lisboa

    Lisboa, Portugal

    ROR https://ror.org/01c27hj86

Revista:
Qualitative theory of dynamical systems

ISSN: 1575-5460

Año de publicación: 2022

Volumen: 21

Número: 2

Tipo: Artículo

DOI: 10.1007/S12346-022-00565-2 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Qualitative theory of dynamical systems

Resumen

In this work we study polynomial differential systems in the plane and define a new type of integrability that we call Puiseux integrability. As its name indicates, the Puiseux integrability is based on finding and studying the structure of Puiseux series that are solutions of a first order ordinary differential equation related to the original differential system. The necessary and sufficient conditions to have such integrability are given. These conditions are used to solve the integrability problem for quintic Liénard differential systems with a cubic damping function.

Información de financiación

Referencias bibliográficas

  • 1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55. U.S. Government Printing Office, Washington, D.C. (1964)
  • 2. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Elsevier Science, NorthHolland) (2000)
  • 3. Bruno, A.D.: Asymptotic behaviour and expansions of solutions of an ordinary differential equation. Russ. Math. Surv. 59(3), 429–481 (2004)
  • 4. Christopher, C.J.: Liouvillian first integrals of second order polynomial differential equations. Electron. J. Differ. Equ. 1999(49), 7
  • 5. Christopher, C.J., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. Pacific J. Math. 229(1), 63–117 (2007)
  • 6. García, I.A., Giné, J.: Generalized cofactors and nonlinear superposition principles. Appl. Math. Lett. 16(7), 1137–1141 (2003)
  • 7. García, I.A., Giné, J.: Non-algebraic invariant curves for polynomial planar vector fields. Disc. Contin. Dyn. Syst. 10(3), 755–768 (2004)
  • 8. Demina, M.V.: Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems. Phys. Lett. A 382(20), 1353–1360 (2018)
  • 9. Demina, M.V.: Invariant algebraic curves for Liénard dynamical systems revisited. Appl. Math. Lett. 84, 42–48 (2018)
  • 10. Demina, M.V.: Invariant surfaces and Darboux integrability for non-autonomous dynamical systems in the plane. J. Phys. A 51(50), 505202 (2018)
  • 11. Demina, M.V.: The method of Puiseux series and invariant algebraic curves. Commun. Contemp. Math. 2150007 (2020) (in press)
  • 12. Demina, M.V.: Necessary and sufficient conditions for the existence of invariant algebraic curves. Electron. J. of Qual. Theory Differ. Equ. 48, 1–22 (2021)
  • 13. Demina, M.V.: Classifying algebraic invariants and algebraically invariant solutions. Chaos Solit. Fract. 140, 110219 (2020)
  • 14. Demina, M.V.: Liouvillian integrability of the generalized Duffing oscillators. Anal. Math. Phys. 11(1), 1–18 (2021)
  • 15. Demina, M.V., Kudryashov, N.A.: The Yablonskii-Vorob’ev polynomials for the second Painlevé hierarchy. Chaos Solit. Fract. 32(2), 526–537 (2007)
  • 16. Demina, M.V., Valls, C.: On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations. Proc. Roy. Soc. Edinburgh Sec. A Math. 150(6), 3231–3251 (2020)
  • 17. García, I.A., Giacomini, H., Giné, J.: Generalized nonlinear superposition principles for polynomial planar vector fields. J. Lie Theory 15(1), 89–104 (2005)
  • 18. Giné, J.: Reduction of integrable planar polynomial differential systems. Appl. Math. Lett. 25(11), 1862–1865 (2012)
  • 19. Giné, J.: Liénard equation and its generalizations, Internat. J. Bifur. Chaos Appl. Sci. Eng. 27(6), 1750081 (2017) (7 pp)
  • 20. Giné, J., Grau, M.: Weierstrass integrability of differential equations. Appl. Math. Lett. 23(5), 523–526 (2010)
  • 21. Giné, J., Grau, M., Llibre, J.: On the extensions of the Darboux theory of integrability. Nonlinearity 26(8), 2221–2229 (2013)
  • 22. Giné, J., Llibre, J.:Weierstrass integrability in Liénard differential systems. J. Math. Anal. Appl. 377(1), 362–369 (2011)
  • 23. Giné, J., Llibre, J.: A note on Liouvillian integrability. J. Math. Anal. Appl. 387(2), 1044–1049 (2012)
  • 24. Giné, J., Llibre, J.: Formal Weierstrass non-integrability criterion for some classes of polynomial differential systems in C2, Internat. J. Bifur. Chaos Appl. Sci. Eng. 30(4), 2050064 (2020)
  • 25. Giné, J., Llibre, J.: Strongly formal weierstrass non-integrability for polynomial differential systems in C2. Electron. J. Qual. Theory Differ. Equ. (1), 1–16 (2020)
  • 26. Giné, J., Santallusia, X.: Abel differential equations admitting a certain first integral. J. Math. Anal. Appl. 370(1), 187–199 (2010)
  • 27. Liénard, A.: Etude des oscillations entretenues, Revue générale de l’électricité 23, 901–912 and 946– 954 (1928)
  • 28. Nicklason, G.R.: An Abel type cubic system. Electron. J. Differ. Equ. (189) ( 2005) (17 pp)
  • 29. Odani, K.: The limit cycle of the van der Pol equation is not algebraic. J. Differ. Equ. 115(1), 146–152 (1995)
  • 30. Singer, M.F.: Liouvillian first integrals of differential equations. Trans. Am. Math. Soc. 333, 673–688 (1992)
  • 31. Van der Pol, B.: A theory of the amplitude of free and forced triode vibrations. Radio Rev. 1(701–710), 754–762 (1920)
  • 32. Van der Pol, B.: On relaxation-oscillations, The London, Edinburgh and Dublin Phil. Mag. J. Sci. 2(7), 978–992 (1927)
  • 33. Zhang, X.: Liouvillian integrability of polynomial differential systems. Trans. Am. Math. Soc. 368(1), 607–620 (2016)