Quantification of gypsum in soilsMethodological proposal

  1. Daniela Álvarez 1
  2. Montserrat Antúnez 1
  3. Silvia Porras 1
  4. Rafael Rodríguez-Ochoa 1
  5. José Ramón Olarieta 1
  6. Rosa M. Poch 1
  1. 1 Universitat de Lleida
    info

    Universitat de Lleida

    Lleida, España

    ROR https://ror.org/050c3cw24

Revista:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Año de publicación: 2022

Volumen: 12

Número: 1

Tipo: Artículo

DOI: 10.3389/SJSS.2022.10669 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Spanish Journal of Soil Science: SJSS

Objetivos de desarrollo sostenible

Resumen

Gypsum is widely found in soils under arid and semi-arid climates due to its semi-soluble nature. In spite of that, they are less known than other soils, and this has generated some misunderstandings in some initial pedological concepts and in soil classification systems. In addition, the quantification of gypsum, and in particular of its secondary accumulations is affected by the sampling procedures and sample handling in the lab; besides by the methods used for the determination of gypsum themselves, since they differ on the accuracy, cost, and expertise needed. The objective of our research is to improve some laboratory procedures in order to determine and quantify gypsum in the soil, especially secondary accumulations. We applied several methods of sample handling and gypsum analysis to a loess profile in the Ebro Valley (NE Iberia), consisting of 10 horizons containing gypsum in varying amounts (0 to about 50%); of different sizes and morphologies. We propose a protocol considering procedures (sieving or not), qualitative determinations and two methods (turbidimetry and dehydration of crystallization water) for an optimal determination of gypsum depending on the characteristics of the sample and compared them with the acetone method (US Salinity Laboratory Staff, Agric. Handb., 1954, 60, 175; Nelson, 1978, 181), as it is the reference method in the main Classification Systems. The results obtained after applying the different methods for the analysis of gypsum in bulk samples have allowed us to propose a decision tree procedure for the determination of gypsum in soil materials. This procedure includes, determination of gypsum in all fractions, coarse and fine, the estimated amount of gypsum in the field (as a major or minor component) and the presence of other components that may interfere with the results. The most accurate results are obtained with those methods based on the loss of gypsum water upon heating when gypsum content is >4%, and with the turbidimetric method in case of lower amounts of gypsum. Finally, we discuss the implications of these analyses when a soil is classified according to the main soil classification systems (WRB 2014; Soil Survey Staff, SSS- NRCS, 2014).

Información de financiación

Referencias bibliográficas

  • Al-Muktar, A. O. (1987). Mapping and Microscopic investigation of the Gypsiferous Soils in the Dour and Jezir-J area of Iraq. PhD thesis. RUG.
  • Artieda, O. (1993). Factores geológicos que inciden en el desarrollo de los suelos en un medio semiá rido. El caso de Quinto, Zaragoza. (In Spanish.Spain: Univ. of Zaragoza. M.S. Thesis.
  • Artieda, O. (1996). Génesis y distribución de suelos en un medio semiárido. Madrid: Quinto, Zaragoza. Ministerio de Agricultura, Pesca y Alimentación.
  • Artieda, O., Herrero, J., and Drohan, P. J. (2006). Refinement of the Differential Water Loss Method for Gypsum Determination in Soils. Soil Sci. Soc. Am. J. 70 (6), 1932–1935. doi:10.2136/sssaj2006.0043N
  • Burns, D. T., Danzer, K., and Townshend, A. (2002). Use of the Terms “recovery” and “Apparent Recovery” in Analytical Procedures. Pure Appl. Chem. 74, 2201–2205.
  • Casby-Horton, S., Herrero, J., and Rolong, N. A. (2015). Gypsum Soils—Their Morphology, Classification, Function, and Landscapes. Adv. Agron. 130, 231–290. doi:10.1016/bs.agron.2014.10.002
  • CBDSA- Comisión del Banco de Datos de Suelos y Aguas (1983). Sinedares: sistema de información edafológica y agronómica de España: manual para la descripción codificada de suelos en el campo. Ministerio de Agricultura, Pesca y Alimentación.
  • Dekkiche, B. (1974). Contribution à l'étude des sols du Hodna et géochimique des eaux de la nappe: Thèse Doctorale. Belgium: U. Ghent.
  • Eswaran, H., Ilaiwi, M., and Osman, A. (1981). Mineralogy and Micromorphology of Aridisols. Proc. 3rd Int. Soil Classif. Workshop, ACSAD, Damascus, 153–170.
  • FAO (1988). FAO/UNESCO Soil Map of the World, Revised Legend. World Resources Report 60, FAO Rome. Reprinted as Technical Paper 20. Wageningen: ISRIC, 138.
  • FAO (1990). Management of Gypsiferous Soils, 62. Rome: Soils Bull.FAO.
  • Halitim, A. (1985). Contribution a l’étude des sols des zones arides (hautes plaines steppiques de l’Algerie): morphologie, distribution et role des sels dans la genese et le comportement des sols. Chapitre 111: Les accumulations gypseuses. Sciences du Vivant [q-bio]. Français: Thèse Doctorale. Ecole Nationale Supérieure Agronomique. tel-02858263.
  • Herrero, J., Artieda, O., and Hudnall, W. H. (2009). Gypsum, a Tricky Material. Soil Sci. Soc. Am. J. 73 (6), 1757–1763. doi:10.2136/sssaj2008.0224
  • Herrero, J., Artieda, O., and Weindorf, D. C. (2020). Soil Gypsum Determination. Soil Sci. Soc. Am. J. 84 (5), 1477–1484. doi:10.1002/saj2.20156
  • Herrero, J., and Porta, J. (1991). Aridisols of Spain. Proc. VI Int. Soil Correlation Meeting. Lincoln: USDA-SCS, 61–66.
  • Herrero, J., Porta, J., and Fedoroff, N. (1987). “Gypsiferous Soils in the North-East of Spain,” in Soil Micromorphology", AFES-Plaisir. Editor N. Fédoroff, 187–192.
  • Herrero, J., Porta, J., and Fedoroff, N. (1992). Hypergypsic Soil Micromorphology and Landscape Relationships. Soil Sci. Soc. Am. J. 56. doi:10.2136/sssaj1992.03615995005600040031x
  • Herrero, J. (2004). Revisiting the Definitions of Gypsic and Petrogypsic Horizons in Soil Taxonomy and World Reference Base for Soil Resources. Geoderma 120 (1–2), 1–5. doi:10.1016/j.geoderma.2003.07.004
  • Hirst, C. T., and Greaves, J. E. (1922). Factors Influencing the Determination of Sulphates in Soil. Soil Sci. 13 (4), 231–250. doi:10.1097/00010694-192204000-00001
  • Horton, A. D., and Thomason, P. F. (1951). Polarographic Determinationof Sulphate. Anal. Chem. 23 (12), 1859–1860. doi:10.1021/ac60060a038
  • Ilaiwi, M. (1983). Contribution to the Knowledge of the Soils of Syria. Ph. D. Thcsis. Belgium: Universiteit Gent, 259. + Annexes.
  • Kulkc, H. (1974). Zur Geologie und Mineralogie der Knlk- und Gipskrusten Algeriens. Geologische Rundschau 63, 970–998.
  • Lagerwerff, J. V., Akin, G. W., and Moses, S. W. (1965). Detection and Determination of Gypsum in Soils. Soil Sci. Soc. Am. J. 29, 535–540. doi:10.2136/sssaj1965.03615995002900050019x
  • Lebron, I., Herrero, J., and Robinson, D. A. (2009). Determination of Gypsum Content in Dryland Soils Exploiting the Gypsum–Bassanite Phase Change. Soil Sci. Soc. Am. J. 73 (2), 403–411. doi:10.2136/sssaj2008.0001
  • Loeppert, R. H., and Suarez, D. L. (1996). “Carbonate and Gypsum,” in Methods of Soil Analysis. Part 3 Chemical Methods. SSSA Book Series No. 5. Editor D. L. Sparks (Madison, WI: SSSA), 437–474.
  • Nelson, R. E. (1982). “Carbonate and Gypsum,” in Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Editors A. L. Page, R. H. Miller, and D. R. Keeney. 2nd ed. (Madison, WI: Agron. Monogr. 9. ASA and SSSA), 181–197.
  • Nelson, R. E., Klameth, L. C., and Nettleton, W. D. (1978). Determining Soil Gypsum Content and Expressing Properties of Gypsiferous Soils. Soil Sci. Soc. Am. J. 42, 659–661. doi:10.2136/sssaj1978.03615995004200040025x
  • Omran, E. S. E. (2016). A Simple Model for Rapid Gypsum Determination in Arid Soils. Model. Earth Syst. Environ. 2 (4), 1–12. doi:10.1007/s40808-016-0242-3
  • Poch, R. M., Rodríguez-Ochoa, R., Artieda, O., Balasch, J. C., and Boixadera, J. (2021). Silt-Sized Sediments and Gypsum on Surface Formations in the Ebro Basin: a Disambiguation of the Term "gypsiferous Silts. Geol. Acta 19, 2021. doi:10.1344/GeologicaActa2021.19.8
  • Poch, R. M., Artieda, O., and Lebedeva, M. (2018). “Gypsic Features,” in Interpretation of Micromorphological Features of Soils and Regoliths. Editors G. Stoops, V. Marcelino, and F. Mees (Elsevier), 259–287.
  • Poch, R. M. (1992). Characteristics of the Sand Fraction of Two Hypergypsic Horizons of 'El Pla d'Urgell' NE (Spain). Egypt. J. Soil Sci. 31 (4), 523–535.
  • Porta, J., and Herrero, J. (1988). Micromorfología de suelos con yeso. An.Edafol. Agrobiol. T. XLVII (1-2), 179–197.
  • Porta, J. (1986). Edafogénesis de suelos yesíferos en medio semiárido. Dep. Lleida: Meteorología i Ciencia del Sol - ETSEA Lleida, 136.
  • Porta, J., and López-Acevedo, M. (2005). Agenda de campo de suelos: información de suelos para la agricultura y el medio ambiente. Madrid: Mundi-Prensa Libros.
  • Porta, J., López-Acevedo, M., and Rodríguez-Ochoa, R. (1986). “Técnicas y experimentos en edafología In Spanish,” in Colegio Oficial Ingenieros Agrónomos Lleida: Barcelona, Spain.
  • Porta, J. (1998). Methodologies for the Analysis and Characterization of Gypsum in Soils: a Review. Geoderma 87 (1-2), 31–46. doi:10.1016/s0016-7061(98)00067-6
  • Soil Survey Staff (1990). “Keys to Soil Taxonomy,” in SMSS Tech.Monogr. 19. 4th ed. (Blacksburg: Virg. Polytech. and State Univ.).
  • Soil Survey Staff (2014). Keys to Soil Taxonomy. 12th ed. Washington, DC: USDA-NRCS.
  • Stoops, G., and Ilaiwi, M. (1981). “Gypsum in Arid Soils: Morphology and Genesis,” in Proceedings of the Third International Soil Classification Workshop. The Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD): Damascus. Editors F. H. Beinroth, and A. Osman, 175–178.
  • U.S. Salinity Laboratory Staff (1954). Diagnosis and Improvement of Saline and Alkali Soils. Agric. Handb. 60, 175.
  • Van Reeuwijk, L. P. (Editor) (1987). Procedures for Soil Analysis (Wageningen, the Netherlands: Int. Soil Ref. Inf. Ctr.).
  • Watson, A. (1985). Structure, Chemistry and Origins of Gypsum Crusts in Southern Tunisia and the Central Namib Desert. Sedimentology 32, 855–875. doi:10.1111/j.1365-3091.1985.tb00737.x
  • Weindorf, A., Herrero, J., Castañeda, C., Bakr, N., and Swanhart, S. (2013). Direct Soil Gypsum Quantification via Portable X-Ray Fluorescence Spectrometry. Soil Sci. Soc. Am. J. 77, 2071–2077. doi:10.2136/sssaj2013.05.0170