Bioconservación frente a patógenos de transmisión alimentaria en frutas y hortalizas mínimamente procesadas

  1. Alegre Vilas, Isabel 1
  2. Abadias Seró, Maribel 2
  3. Colás Medà, Pilar 1
  4. Collazo Cordero, Cyrelys 1
  5. Viñas Almenar, Inmaculada 1
  1. 1 Universitat de Lleida
    info

    Universitat de Lleida

    Lleida, España

    ROR https://ror.org/050c3cw24

  2. 2 Institute of Agrifood Research and Technology (IRTA)
Revista:
Arbor: Ciencia, pensamiento y cultura

ISSN: 0210-1963

Año de publicación: 2020

Volumen: 196

Número: 795

Tipo: Artículo

DOI: 10.3989/ARBOR.2020.795N1007 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Arbor: Ciencia, pensamiento y cultura

Resumen

El aumento en la producción y consumo de frutas y hortalizas mínimamente procesadas de los últimos años ha con­tribuido a incrementar las toxiinfecciones alimentarias asociadas al consumo de productos vegetales frescos. Esto es debido a que los tratamientos desinfectantes llevados a cabo actualmente por industria de IV gama son insuficientes para garantizar la seguridad microbiológica de los productos finales, y además estos no reciben ningún tratamiento capaz de eliminar todos los patógenos antes de su consumo. Por lo tanto, es necesario utilizar estrategias al­ternativas para reducir los microorganismos patógenos y alteran­tes en frutas y hortalizas. La bioconservación, mediante el uso de microorganismos o sus metabolitos, es una alternativa que, en combinación con las prácticas habituales, puede reducir o prevenir el crecimiento de patógenos en productos mínimamente procesa­dos, mejorando su calidad microbiológica. En este artículo se pre­sentan los resultados más relevantes sobre la bioconservación de frutas y hortalizas mínimamente procesadas.

Información de financiación

Los autores agradecen a MINECO por su soporte econ?mico (Proyectos AGL-2004-06027, AGL-200908506 y AGL-2012-38671), a FECYT por la financiaci?n del proyecto FECYT CC/2013105 y al Programa CERCA de la Generalitat de Catalunya.

Financiadores

Referencias bibliográficas

  • Abadias, M., Altisent, R., Usall, J., Torres, R., Oliveira, M. y Viñas, I. (2014). Biopreservation of fresh-cut melon using the strain Pseudomonas graminis CPA-7. Postharvest Biology and Technology, 96, pp. 69-77.
  • Abadias, M., Usall, J., Alegre, I., Torres, R. y Viñas, I. (2009). Fate of Escherichia coli in apple and reduction of its growth using the postharvest biocontrol agent Candida sake CPA-1. Journal of the Science of Food and Agriculture, 89 (9), pp. 1526- 1533.
  • Abuladze, T., Li, M., Menetrez, M. Y., Dean, T., Senecal, A. y Sulakvelidze, A. (2008). Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Applied and Environmental Microbiology, 74 (20), pp. 6230-6238.
  • Alegre, I., Viñas, I., Usall, J., Anguera, M. y Abadias, M. (2011). Microbiological and physicochemical quality of fresh-cut apple enriched with the probiotic strain Lactobacillus rhamnosus GG. Food MiMicrobiology, 28 (1), pp. 59-66.
  • Alegre, I., Viñas, I., Usall, J., Anguera, M., Altisent, R. y Abadias, M. (2013). Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions. Food Microbiology, 33 (2), pp. 139-148.
  • Alegre, I., Viñas, I., Usall, J., Anguera, M., Figge, M. J., Abadias, M. (2012). An Enterobacteriaceae species isolated from apples controls foodborne pathogens on fresh-cut apples and peaches. Postharvest Biology and Technology, 74, pp. 118-124.
  • Alegre, I., Viñas, I., Usall, J., Teixidó, N., Figge, M. J. y Abadias, M. (2013). Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiology, 34, pp. 390-399.
  • Allende, A., Martínez, B., Selma, V., Gil, M. I., Suárez, J. E. y Rodríguez, A. (2007). Growth and bacteriocin production by lactic acid bacteria in vegetable broth and their effectiveness at reducing Listeria monocytogenes in vitro and in fresh-cut lettuce. Food Microbiology, 24 (7-8), pp. 759–766.
  • Artés, F., Gómez, P., Aguayo, E., Escalona, V. y Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51 (3), pp. 287–296.
  • Barbosa, A. A. T., Araújo, H. G. S. de, Matos, P. N., Carneloss, M. A. G. y Castro, A. A. de (2013). Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processed mangoes. International Journal of Food Microbiology, 164 (2-3), pp. 135-140.
  • Bari, M. L., Ukuku, D. O., Kawasaki, T., Inatsu, Y., Isshiki, K. y Kawamoto, S. (2005). Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. Journal of Food Protection, 68 (7), pp. 1381–1387.
  • Bennik, M. H. J., van Overbeek, W., Smid, E. J. y Gorris, L. G. M. (1999). Biopreservation in modified atmosphere stored mungbean sprouts: The use of vegetable-associated bacteriocinogenic lactic acid bacteria to control the growth of Listeria monocytogenes. Letters in Applied Microbiology, 28 (3), pp. 226– 232.
  • Boyacioglu, O., Sharma, M., Sulakvelidze, A. y Goktepe, I. (2013). Biocontrol of Escherichia coli O157:H7 on fresh-cut leafy greens. Bacteriophage, 3 (1), e24620.
  • Brüssow, H. y Kutter, E. (2005). Phage ecology. En: Kutter, E. y Sulakvelidze, A. (eds.). Bacteriophages: biology and applications. Florida: Boca Raton CRC Press, pp. 129-163.
  • Chen, H. y Hoover, D. G. (2003). Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2 (3), pp. 82-100.
  • Cobo-Molinos, A., Abriouel, H., Ben Omar, N., Valdivia, E., López, R. L., Maqueda, M., Martínez Cañamero, M. y Gálvez, A. (2005). Effect of immersion solutions containing enterocin AS-48 on Listeria monocytogenes in vegetable foods. Applied and Environmental Micorbiology, 71 (12), pp. 7781-7787.
  • Collazo, C., Abadias, M., Aguiló-Aguayo, I., Alegre, I., Chenoll, E. y Viñas, I. (2017). Studies on the biocontrol mechanisms of Pseudomonas graminis strain CPA- 7 against food-borne pathogens in vitro and on fresh-cut melon. LWT - Food Science and Technology, 85, pp. 301-308.
  • Collazo, C., Abadias, M., Colás-Medà, P., Iglesias, M. B., Granado-Serrano, A. B., Serrano, J. y Viñas, I. (2017). Effect of Pseudomonas graminis strain CPA-7 on the ability of Listeria monocytogenes and Salmonella enterica subsp. enterica to colonize Caco-2 cells after pre-incubation on fresh-cut pear. International Journal of Food Microbiology, 262, pp. 55-62.
  • Collazo, C., Giné-Bordonaba, J., Aguiló- Aguayo, I., Povedano, I., Bademunt, A. y Viñas, I. (2018). Pseudomonas graminis strain CPA-7 differentially modulates the oxidative response in fresh-cut ‘Golden delicious’ apple depending on the storage conditions. Postharvest Biology and Technology, 138, pp. 46- 55.
  • Cotter, P. D., Hill, C. y Ross, P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews. Microbiology, 3 (10), pp. 777–788.
  • European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) (2018). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal, 16 (12), e05500.
  • EFSA Panel on Biological Hazards (BIOHAZ) (2016). Evaluation of the safety and efficacy of Listex™ P100 for reduction of pathogens on different ready-to-eat (RTE) food products. EFSA Journal, 14 (8), e04565.
  • Faleiro, M. L. (2010). The mode of antibacterial action of essential oils. Science against microbial pathogens: communicating current research and technological advances, 2, pp. 1143-1156.
  • Fliss, I., Hammami, R. y Le Lay, C. (2011). Biological control of human digestive microbiota using antimicrobial cultures and bacteriocins. En Lacroix, C (ed.). Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Cambridge, U. K.: Woodhead Publishing, pp. 240-263.
  • Francis, G. A. y O’Beirne, D. (1997). Effects of gas atmosphere, antimicrobial dip and temperature on the fate of Listeria innocua and Listeria monocytogenes on minimally processed lettuce. International Journal of Food Science and Technology, 32 (2), pp. 141-151.
  • Gil, M. I., Selma, M. V., López-Gálvez, F. y Allende, A. (2009). Fresh-cut product sanitation and wash water disinfection: Problems and solutions. International Journal of Food Microbiology, 134 (1-2), pp. 37-45.
  • Gragg, S. E. y Brashears, M. M. (2010). Reduction of Escherichia coli O157:H7 in fresh spinach, using lactic acid bacteria and chlorine as a multihurdle intervention. Journal of Food Protection 73 (2), pp. 358-361.
  • Holzapfel, W. H., Geisen, R. y Schillinger, U. (1995). Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. International Journal of Food Microbiology, 24 (3), pp. 343-362.
  • Iglesias, M. B., Abadias, M., Anguera, M., Sabata, J. y Viñas, I. (2017). Antagonistic effect of probiotic bacteria against foodborne pathogens on fresh-cut pear. LWT-Food Science and Technology, 81, pp. 243-249.
  • Iglesias, M. B., Abadias, M., Anguera, M. y Viñas, I. (2018). Efficacy of Pseudomonas graminis CPA-7 against Salmonella spp. and Listeria monocytogenes on fresh-cut pear and setting up of the conditions for its commercial application. Food Microbiology, 70, pp. 103-112.
  • Iglesias, M. B., Echeverría, G., Viñas, I., López, M. L. y Abadias, M. (2018). Biopreservation of fresh-cut pear using Lactobacillus rhamnosus GG and effect on quality and volatile compounds. LWT - Food Science and Technology, 87, pp. 581-588.
  • Iglesias, M. B., López, M. L., Echeverría, G., Viñas, I., Zudaire, L. y Abadias, M. (2018). Evaluation of biocontrol capacity of Pseudomonas graminis CPA-7 against foodborne pathogens on fresh-cut pear and its effect on fruit volatile compounds. Food Microbiology, 76, pp. 226-236.
  • Iglesias, M. B., Viñas, I., Colás-Medà, P., Collazo, C., Serrano, J. C. E. y Abadias, M. (2017). Adhesion and invasion of Listeria monocytogenes and interaction with Lactobacillus rhamnosus GG after habituation on fresh-cut pear. Journal of Functional Foods, 34, pp. 453-460.
  • Komitopoulou, E., Boziaris, I. S., Davies, E. A., Delves-Broughton, J. y Adams, M. R. (1999). Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. International Journal of Food Science and Technology, 34 (1), pp. 81–85.
  • Leverentz, B., Conway, W. S., Alavidze, Z., Janisiewicz, W. J., Fuchs, Y., Camp, M. J., Chighladze, E. y Sulakvelidze, A. (2001). Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: A model study. Journal of Food Protection, 64 (8), pp. 1116- 1121.
  • Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R. y Sulakvelidze, A. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology, 69 (8), pp. 4519-4526.
  • Leverentz, B., Conway, W. S., Janisiewicz, W., Abadias, M., Kurtzman, C. P. y Camp, M. J. (2006). Biocontrol of the food-borne pathogens Listeria monocytogenes and Salmonella enterica serovar Poona on fresh-cut apples with naturally occurring bacterial and yeast antagonists. Applied and Environmental Microbiology, 72 (2), pp. 1135- 1140.
  • Liao, C. y Fett, W. F. (2001). Analysis of native microflora and selection of strains antagonistic to human pathogens on fresh produce. Journal of Food Protection, 64 (8), pp. 1110-1115.
  • López Aguayo, M. D. C., Grande Burgos, M. J., Pérez Pulido, R., Gálvez, A. y Lucas López, R. (2016). Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. Innovative Food Science and Emerging Technologies, 35, pp. 177–183.
  • Magnone, J. P., Marek, P. J., Sulakvelidze, A. y Senecal, A. G. (2013). Additive approach for inactivation of Escherichia coli O157:H7, Salmonella, and Shigella spp. on contaminated fresh fruits and vegetables using bacteriophage cocktail and produce wash. Journal of Food Protection, 76 (8), pp. 1336-1341.
  • McAuliffe, O., Ross, R. y Hill, C. (2001). Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiology Reviews, 25 (3), pp. 285–308.
  • McManamon, O., Kaupper, T., Scollard, J. y Schmalenberger, A. (2019). Nisin application delays growth of Listeria monocytogenes on fresh-cut iceberg lettuce in modified atmosphere packaging, while the bacterial community structure changes within one week of storage. Postharvest Biology and Technology 147, pp. 185–195.
  • Mondragón Preciado, G., Escalante Minakata, P., Osuna Castro, J. A., Ibarra Junquera, V. I., Morlett Chávez, J. A., Aguilar González, C. N. y Rodriguez Herrera, R. (2013). Bacteriocinas: características y aplicación en alimentos. Investigación y Ciencia de La Universidad Autónoma de Aguascalientes, 21 (59), pp. 63–69.
  • Moye, Z. D., Woolston, J. y Sulakvelidze, A. (2018). Bacteriophage applications for food production and processing. Viruses, 10 (4), pp. 205.
  • Narsaiah, K., Wilson, R. A., Gokul, K., Mandge, H. M., Jha, S. N., Bhadwal, S., Anurag, R. K., Malik, R, K. […] y Vij, S. (2015). Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biology and Technology, 100, pp. 212-218.
  • Oliveira, M., Abadias, M., Colás-Medà, P., Usall, J. y Viñas, I. (2015). Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce. International Journal of Food Microbiology, 214, pp. 4-11.
  • Oliveira, M., Viñas, I., Colàs, P., Anguera, M., Usall, J. y Abadias, M. (2014). Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiology, 38, pp. 137-142.
  • Ongeng, D., Ryckeboer, J., Vermeulen, A. y Devlieghere, F. (2007). The effect of micro-architectural structure of cabbage substratum and or background bacterial flora on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 119 (3), pp. 291- 299.
  • Ramos, B., Miller, F. A., Brandao, T. R. S., Teixeria, P. y Silva, C. L. M. (2013). Fresh fruits and vegetables: an overview on applied methodologies to improve its quality and safety. Innovative Food Science and Emerging Technologies, 20, pp. 1-15.
  • Randazzo, C. L., Pitino, I., Scifò, G. O. y Caggia, C. (2009). Biopreservation of minimally processed iceberg lettuces using
  • a bacteriocin produced by Lactococcus lactis wild strain. Food Control, 20 (8), pp. 756-763.
  • Russo, P., de Chiara, M. L. V., Vernile, A., Amodio, M. L., Arena, M. P., Capozzi, V., Massa, S. y Spano, G. (2014). Fresh-cut pineapple as a new carrier of probiotic lactic acid bacteria. BioMed Research International, 2014, 309183.
  • Russo, P., Peña, N., de Chiara, M. L. V., Amodio, M. L., Colelli, G. y Spano, G. (2015). Probiotic lactic acid bacteria for the production of multifunctional fresh-cut cantaloupe. Food Research International, 77, pp. 762-772.
  • Sánchez, G., Elizaquível, P. y Aznar, R. (2012). A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables. International Journal of Food Microbiology, 152 (1-2), pp. 9-13.
  • Scolari, G. y Vescovo, M. (2004). Microbial antagonism of Lactobacillus casei added to fresh vegetables. Italian Journal of Food Science, 16 (4), pp. 465-475.
  • Sharma, M., Patel, J. R., Conway, W. S., Ferguson, S. y Sulakvelidze, A. (2009). Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce. Journal of Food Protection, 72 (7), pp. 1481-1485.
  • Siroli, L., Patrignani, F., Serrazanetti, D. I., Tabanelli, G., Montanari, C., Gardini, F. y Lanciotti, R. (2015). Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb’s lettuce. Food Microbiology, 47, pp. 74-84.
  • Siroli, L., Patrignani, F., Serrazanetti, D. I., Vannini, L., Salvetti, E., Torriani, S., Gardini, F. y Lanciotti, R. (2016). Use of a nisin-producing Lactococcus lactis strain, combined with natural antimicrobials, to improve the safety and shelf-life of minimally processed sliced apples. Food Microbiology, 54, pp. 11–19.
  • Torriani, S., Scolari, G., Dellaglio, F. y Vescovo, M. (1999). Biocontrol of leuconostocs in ready-to-use shredded carrots. Annali di Microbiologia ed Enzimologia, 49, pp. 23-31.
  • Trias, R., Bañeras, L., Badosa, E. y Montesinos, E. (2008). Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. International Journal of Food Microbiology, 123 (1-2), pp. 50-60.
  • Ukuku, D. O., Bari, M. L., Kawamoto, S. y Isshiki, K. (2005). Use of hydrogen peroxide in combination with nisin, sodium lactate and citric acid for reducing transfer of bacterial pathogens from whole melon surfaces to fresh-cut pieces. International Journal of Food Microbiology, 104 (2), pp. 225-233.
  • Ukuku, D. O. y Fett, W. F. (2002). Effectiveness of chlorine and nisin‐EDTA treatments of whole melons and fresh‐cut pieces for reducing native microflora and extending shelf‐life. Journal Food Safety, 22 (4), pp. 231-253.
  • Ukuku, D. O. y Fett, W. F. (2004). Effect of nisin in combination with EDTA, sodium lactate, porassium sorbate for reducing Salmonella on whole fresh-cut cantaloupe. Journal of Food Protection, 67 (10), pp. 2143-2150.
  • Vescovo, M., Torriani, S., Orsi, C., Macchiarolo, F. y Scolari, G. (1996). Application of antimicrobial-producing lactic acid bacteria to control pathogens in ready-to-use vegetables. Journal of Applied Bacteriology, 81 (2), pp. 113-119.
  • Viñas, I., Abadias, M., Usall, J., Teixido, N. y Torres, R. (2017). UE Patente Nº EP2886665. Lleida, España. European Patent Office.
  • Viñas, I., Abadias, M., Usall, J., Teixidó, N. y Torres, R. (2014). EE. UU. Patente Nº 8735136. United States Patent and Trademark Office.
  • Vonasek, E. L., Choi, A. H., Sanchez, J. Jr. y Nitin, N. (2018). Incorporating phage therapy into WPI dip coatings for applications on fresh whole and cut fruit and vegetable surfaces. Journal of Food Science, 83 (7), pp. 1871-1879.
  • Wang, X., Ouyang, Y., Liu, J., Zhu, M., Zhao, G., Bao, W. y Hu, F. B. (2014). Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ: British Medical Journal, 349, g4490.
  • Weiss, A., Hertel, C., Grothe, S., Ha, D. y Hammes, W. P. (2007). Characterization of the cultivable microbiota of sprouts and their potential for application as protective cultures. Systematic and Applied Microbiology, 30 (6), pp. 483-493.
  • Ye, J., Kostrzynska, M., Dunfield, K. y Warriner, K. (2010). Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages. Journal of Food Protection, 73 (1), pp. 9-17.
  • La IV gama de frutas y hortalizas espera crecer un 10% hasta 2020. Valencia Fruits. [En línea]. Disponible en: http:// valenciafruits.com/la-iv-gama-de-frutas-y-hortalizas-espera-crecer-un- 10-hasta-2020/